課題:探索三角形全等的條件一、教學(xué)設(shè)計(jì):1 學(xué)習(xí)方式:對于全等三角形的研究,實(shí)際是平面幾何中對封閉的兩個(gè)圖形關(guān)系研究的第一步。
它是兩個(gè)三角形間最簡單,最常見的關(guān)系。它不僅是學(xué)習(xí)后面知識的基礎(chǔ),并且是證明線段相等、角相等以及兩線互相垂直、平行的重要依據(jù)。因此必須熟練地掌握全等三角形的判定方法,并且靈活的應(yīng)用。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用設(shè)問形式創(chuàng)設(shè)問題情景,設(shè)計(jì)一系列實(shí)踐活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,使學(xué)生經(jīng)歷從現(xiàn)實(shí)世界抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容,解決實(shí)際問題的過程,真正把學(xué)生放到主體位置。
2 學(xué)習(xí)任務(wù)分析:充分利用教科書提供的素材和活動(dòng),鼓勵(lì)學(xué)生經(jīng)歷觀察、操作、推理、想象等活動(dòng),發(fā)展學(xué)生的空間觀念,體會(huì)分析問題、解決問題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。培養(yǎng)學(xué)生有條理的思考,表達(dá)和交流的能力,并且在以直觀操作的基礎(chǔ)上,將直觀與簡單推理相結(jié)合,注意學(xué)生推理意識的建立和對推理過程的理解,能運(yùn)用自己的方式有條理的表達(dá)推理過程,為以后的證明打下基礎(chǔ)。
3 學(xué)生的認(rèn)知起點(diǎn)分析:學(xué)生通過前面的學(xué)習(xí)已了解了圖形的全等的概念及特征,掌握了全等圖形的對應(yīng)邊、對應(yīng)角的關(guān)系,這為探究三角形全等的條件做好了知識上的準(zhǔn)備。另外,學(xué)生也具備了利用已知條件作三角形的基本作圖能力,這使學(xué)生能主動(dòng)參與本節(jié)課的操作、探究成為可能。
4 教學(xué)目標(biāo):(1) 學(xué)生在教師引導(dǎo)下,積極主動(dòng)地經(jīng)歷探索三角形全等的條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程。
(2) 掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實(shí)際問題。
(3) 培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理地表達(dá)能力,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
5 教學(xué)的重點(diǎn)與難點(diǎn):重點(diǎn):三角形全等條件的探索過程是本節(jié)課的重點(diǎn)。從設(shè)置情景提出問題,到動(dòng)手操作,交流,直至歸納得出結(jié)論,整個(gè)過程學(xué)生不僅得到了兩個(gè)三角形全等的條件,更重要得是經(jīng)歷了知識的形成過程,體會(huì)了一種分析問題的方法,積累了數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),這將有利于學(xué)生更好的理解數(shù)學(xué),應(yīng)用數(shù)學(xué)。難點(diǎn):三角形全等條件的探索過程,特別是創(chuàng)設(shè)出問題后,學(xué)生面對開放性問題,要做出全面、正確得分析,并對各種情況進(jìn)行討論,對初一學(xué)生有一定的難度。根據(jù)初一學(xué)生年齡、生理及心理特征,還不具備獨(dú)立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導(dǎo)作用,適時(shí) 點(diǎn)撥、引導(dǎo),盡可能調(diào)動(dòng)所有學(xué)生的積極性、主動(dòng)性參與到合作探討中來,使學(xué)生在與他人的合作交流中獲取新知,并使個(gè)性思維得以發(fā)展。。
6 教學(xué)過程教學(xué)步驟 教師活動(dòng) 學(xué)生活動(dòng) 教學(xué)媒體(資源)和教學(xué)方式復(fù)習(xí)過渡引入新知?jiǎng)?chuàng)設(shè)情景提出問題建立模型探索發(fā)現(xiàn)歸納總結(jié)得出新知鞏固運(yùn)用及其推廣反思小結(jié)提煉規(guī)律電腦顯示,帶領(lǐng)學(xué)生復(fù)習(xí)全等三角定義及其性質(zhì)。電腦顯示,小明畫了一個(gè)三角形,怎樣才能畫一個(gè)三角形與他的三角形全等?我們知道全等三角形三條邊分別對應(yīng)相等,三個(gè)角分別對應(yīng)相等,那麼,反之這六個(gè)元素分別對應(yīng),這樣的兩個(gè)三角形一定全等.但是,是否一定需要六個(gè)條件呢 條件能否盡可能少嗎 對學(xué)生分類中出現(xiàn)的問題,予以糾正,對學(xué)生提出的解決問題的不同策略,要給予肯定和鼓勵(lì),以滿足多樣化的學(xué)生需要,發(fā)展學(xué)生個(gè)性思維。按照三角形“邊、角” 元素進(jìn)行分類,師生共同歸納得出:1 一個(gè)條件:一角,一邊2 兩個(gè)條件:兩角; 兩邊;一角一邊3 三個(gè)條件:三角; 三邊;兩角一邊;兩邊一角按以上分類順序動(dòng)腦、動(dòng)手操作,驗(yàn)證。教師收集學(xué)生的作品,加以比較,得出結(jié)論:只給出一個(gè)或兩個(gè)條件時(shí),都不能保證所畫出的三角形一定全等。下面將研究三個(gè)條件下三角形全等的判定。
(1)已知三角形的三個(gè)角分別為40°、60°、80°,畫出這個(gè)三角形,并與同伴比較是否全等。學(xué)生得出結(jié)論后,再舉例體會(huì)一下。舉例說明:如老師上課用的三角尺與同學(xué)用的三角板三個(gè)角分別對應(yīng) 相等,但一個(gè)大一個(gè)小,很顯然不全等;再如同是等邊三角形,邊長不等,兩個(gè)三角形也不全等。等等。
(2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個(gè)三角形,并與同伴比較是否全等。板演:三邊對應(yīng)相等的兩個(gè)三角形全等,簡寫為“邊邊邊”或“SSS”。由上面的結(jié)論可知,只要三角形三邊的長度確定了,這個(gè)三角形的形狀和大小就確定了。