女人被躁到高潮嗷嗷叫游戏,久久久久亚洲av成人人电影,久久久精品人妻一区二区三区四,久久久久无码精品国产app,免费人成视频在线播放

留求藝—您的留學(xué)規(guī)劃師

《幾何原本》的主要內(nèi)容是怎樣的

172次

問題描述:

《幾何原本》的主要內(nèi)容是怎樣的急求答案,幫忙回答下

最佳答案

推薦答案

古希臘大數(shù)學(xué)家歐幾里得是與他的巨著——《幾何原本》一起名垂千古的。

這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里得最有價(jià)值的一部著作。在《幾何原本》里,歐幾里得系統(tǒng)地總結(jié)了古代勞動(dòng)人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識。歐幾里得把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個(gè)嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。

2000多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。全書共分13卷。書中包含了5條“公理”、5條“公設(shè)”、23個(gè)定義和467個(gè)命題。在每一卷內(nèi)容當(dāng)中,歐幾里得都采用了與前人完全不同的敘述方式,即先提出公理、公設(shè)和定義,然后再由簡到繁地證明它們。這使得全書的論述更加緊湊和明快。而在整部書的內(nèi)容安排上,也同樣貫徹了他的這種獨(dú)具匠心的安排。它由淺到深,從簡至繁,先后論述了直邊形、圓、比例論、相似形、數(shù)、立體幾何以及窮竭法等內(nèi)容。其中有關(guān)窮竭法的討論,成為近代微積分思想的來源。僅僅從這些卷帙的內(nèi)容安排上,我們就不難發(fā)現(xiàn),這部書已經(jīng)基本囊括了幾何學(xué)從公元前7世紀(jì)的古埃及,一直到公元前4世紀(jì)——?dú)W幾里得生活時(shí)期——前后總共400多年的數(shù)學(xué)發(fā)展歷史。這其中,頗有代表性的便是在第1卷到第4卷中,歐幾里得對直邊形和圓的論述。正是在這幾卷中,他總結(jié)和發(fā)揮了前人的思維成果,巧妙地論證了畢達(dá)哥拉斯定理,也稱“勾股定理”,即在一直角三角形中,斜邊上的正方形的面積等于兩條直角邊上的兩個(gè)正方形的面積之和。他的這一證明,從此確定了勾股定理的正確性并延續(xù)了2000多年?!稁缀卧尽肥且徊吭诳茖W(xué)史上千古流芳的巨著。它不僅保存了許多古希臘早期的幾何學(xué)理論,而且通過歐幾里得開創(chuàng)性的系統(tǒng)整理和完整闡述,使這些遠(yuǎn)古的數(shù)學(xué)思想發(fā)揚(yáng)光大。它開創(chuàng)了古典數(shù)論的研究,在一系列公理、定義、公設(shè)的基礎(chǔ)上,創(chuàng)立了歐幾里得幾何學(xué)體系,成為用公理化方法建立起來的數(shù)學(xué)演繹體系的最早典范。照歐氏幾何學(xué)的體系,所有的定理都是從一些確定的、不需證明而礴然為真的基本命題即公理演繹出來的。這一方法后來成了用以建立任何知識體系的嚴(yán)格方式,人們不僅把它應(yīng)用于數(shù)學(xué)中,也把它應(yīng)用于科學(xué),而且也應(yīng)用于神學(xué)甚至哲學(xué)和倫理學(xué)中,對后世產(chǎn)生了深遠(yuǎn)的影響。盡管歐幾里得的幾何學(xué)在差不多2000年間,被奉為嚴(yán)格思維的幾乎無懈可擊的范例,但實(shí)際上它并非總是正確的。人們發(fā)現(xiàn),一些歐幾里得作為不證自明的公理,卻難以自明,越來越遭到懷疑。比型“第五平行公理”,歐幾里得在《幾何原本》一書中斷言:“通過已知外一已知點(diǎn),能作且僅能作一條直線與已知直線平行。 ”這個(gè)結(jié)果在普通平面當(dāng)中尚能夠得到經(jīng)驗(yàn)的印證,那么在無處不在的球面之中(地球就是個(gè)大曲面)這個(gè)平行公理卻是不成立的。羅伯切夫斯基和黎曼由此創(chuàng)立了球面幾何學(xué),即歐幾里得幾何學(xué)。但是,在人類認(rèn)識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實(shí)際上是用一個(gè)未知的定義來解釋另一個(gè)未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個(gè)概念。

《幾何原本》的主要內(nèi)容是怎樣的

其他答案

《幾何原本》的主要內(nèi)容如下

《幾何原本》最主要的特色是建立了比較嚴(yán)格的幾何體系,在這個(gè)體系中有四方面主要內(nèi)容,定義、公理、公設(shè)、命題(包括作圖和定理)?!稁缀卧尽返谝痪砹杏?3個(gè)定義,5條公理,5條公設(shè)。(其中最后一條公設(shè)就是著名的平行公設(shè)),

這些定義、公理、公設(shè)就是《幾何原本》全書的基礎(chǔ)。全書以這些定義、公理、公設(shè)為依據(jù)邏輯地展開他的各個(gè)部分的。比如后面出現(xiàn)的每一個(gè)定理都寫明什么是已知、什么是求證。都要根據(jù)前面的定義、公理、定理進(jìn)行邏輯推理給予仔細(xì)證明。

《幾何原本》是古希臘數(shù)學(xué)家歐幾里得所著的一部數(shù)學(xué)著作,共13卷。這本著作是歐幾里得幾何的基礎(chǔ),在西方是僅次于《圣經(jīng)》而流傳最廣的書籍。

為你推薦

網(wǎng)站首頁  |  關(guān)于我們  |  聯(lián)系方式  |  用戶協(xié)議  |  隱私政策  |  在線報(bào)名  |  網(wǎng)站地圖