在做題方面. 拿這個例子來說,函數(shù)能夠代入某點的取值來求極限的條件是什么?那就是這個函數(shù)是連續(xù)函數(shù),雖然說我們碰到的e799bee5baa6e79fa5e98193e58685e5aeb931333238656564大部分函數(shù)都是連續(xù)的,但最好還是不要想當然。
類似的例子還有很多,而且就我個人的經(jīng)驗以及和以前一起復(fù)習(xí)的同學(xué)交流的情況來看,很多人容易忽視這個環(huán)節(jié)。連續(xù)函數(shù)的若干性質(zhì),如最大值最小值定理、零點定理等,都是指的閉區(qū)間上連續(xù)函數(shù)的性質(zhì);中值定理那一章節(jié)里,很多定理成立的條件都是所給函數(shù)在閉區(qū)間上連續(xù)、開區(qū)間上可導(dǎo);應(yīng)用得非常多的格林公式和高斯公式成立的條件是對應(yīng)的閉合曲線或閉合曲面所包圍的區(qū)域內(nèi)不含奇點,在所求積分區(qū)域不閉合時要用補線或補面的方法,當有奇點時要想辦法把單連通區(qū)域轉(zhuǎn)化成多連通區(qū)域,使得對應(yīng)的多連通區(qū)域不含奇點后才能應(yīng)用相應(yīng)的定理。強烈建議大家在復(fù)習(xí)過程中自己多總結(jié),總的來說,記得知識點不是難事,但是一定要注意同時把某一知識點對應(yīng)的適用條件也掌握好!只有同時把這兩方面把握住了,概念這一塊才算過關(guān),才算打好了基礎(chǔ)。 在速度和準確率方面。我以前在高中的時候就吃過這方面的虧,一張數(shù)學(xué)卷子發(fā)下來,題目都會做,都有思路,但是一做起來就漏洞百出,總有地方出錯,結(jié)果時間自然不夠。歸根結(jié)底就是因為自己平時從來不練,看到一道題,先想思路,如果方法上沒有什么障礙的話就認為不會有問題了,其實事實上如果真的動手去做很可能發(fā)現(xiàn)并非想象那么簡單。進大學(xué)以后我就時常注意在學(xué)習(xí)的同時多練習(xí)。數(shù)學(xué)上的思想方法:分類討論、數(shù)形結(jié)合、微元分析等。因為高等數(shù)學(xué)里面函數(shù)的地位是很重的,所以很有必要熟悉一些常用函數(shù)的性態(tài),在涉及到此的時候最好能數(shù)形結(jié)合,便于分析,而且不要僅限于直角坐標的,極坐標下某些曲線的圖形也應(yīng)該掌握,比如星形線、對數(shù)螺線等,如果把對象擴大到空間坐標系,那還有各種旋轉(zhuǎn)面、柱面、錐面等,要會寫它們的柱坐標或者球坐標方程,這在求重積分的時候是重要的解題手段。分類討論,線性代數(shù)用得比較多,尤其是在涉及線性方程組的題目時,對于未知參數(shù)常常需討論取值。微元分析可謂是大學(xué)數(shù)學(xué)里最重要的思維方法了,不僅數(shù)學(xué)要用到,很多后續(xù)課程都要用到,具體的思路大家可以參考定積分的應(yīng)用部分。