一般有以下幾種方法:
1、計(jì)算A^2,A^3 找規(guī)律,然后用歸納法證明。
2、若r(A)=1,則A=αβ^T,A^n=(β^Tα)^(n-1)A注:β^Tα =α^Tβ = tr(αβ^T)3、分拆法:A=B+C,BC=CB,用二項(xiàng)式公式展開。適用于 B^n 易計(jì)算,C的低次冪為零:C^2 或 C^3 = 04、用對角化 A=P^-1diagPA^n = P^-1diag^nP擴(kuò)展資料:將一個(gè)矩陣分解為比較簡單的或具有某種特性的若干矩陣的和或乘積,矩陣的分解法一般有三角分解、譜分解、奇異值分解、滿秩分解等。在線性代數(shù)中,相似矩陣是指存在相似關(guān)系的矩陣。相似關(guān)系是兩個(gè)矩陣之間的一種等價(jià)關(guān)系。兩個(gè)n×n矩陣A與B為相似矩陣當(dāng)且僅當(dāng)存在一個(gè)n×n的可逆矩陣P。一個(gè)矩陣A的列秩是A的線性獨(dú)立的縱列的極大數(shù)目。類似地,行秩是A的線性無關(guān)的橫行的極大數(shù)目。通俗一點(diǎn)說,如果把矩陣看成一個(gè)個(gè)行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無關(guān)組中所含向量的個(gè)數(shù)。