數(shù)形結(jié)合思想是一種數(shù)學(xué)思想方法。
數(shù)與形是數(shù)學(xué)中的兩個(gè)最古老,也是最基本的研究對(duì)象,它們?cè)谝欢l件下可以相互轉(zhuǎn)化。中學(xué)數(shù)學(xué)研究的對(duì)象可分為數(shù)和形兩大部分,數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱(chēng)之為數(shù)形結(jié)合,或形數(shù)結(jié)合。數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來(lái)闡明形的某些屬性,或者借助形的幾何直觀性來(lái)闡明數(shù)之間某種關(guān)系,即數(shù)形結(jié)合包括兩個(gè)方面:第一種情形是“以數(shù)解形”,而第二種情形是“以形助數(shù)”?!耙詳?shù)解形”就是有些圖形太過(guò)于簡(jiǎn)單,直接觀察卻看不出什么規(guī)律來(lái),這時(shí)就需要給圖形賦值,如邊長(zhǎng)、角度等。基本思想是:我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休?!薄皵?shù)”與“形”反映了事物兩個(gè)方面的屬性。數(shù)形結(jié)合,主要指的是數(shù)與形之間的一一對(duì)應(yīng)關(guān)系。數(shù)形結(jié)合就是把抽象的數(shù)學(xué)語(yǔ)言、數(shù)量關(guān)系與直觀的幾何圖形、位置關(guān)系結(jié)合起來(lái),通過(guò)“以形助數(shù)”或“以數(shù)解形”即通過(guò)抽象思維與形象思維的結(jié)合,可以使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,從而實(shí)現(xiàn)優(yōu)化解題途徑的目的。